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Abstract

Dietary habits are closely related to people’s health condition. Unhealthy diet can cause obesity, diabetes, heart dis-
eases, as well as increase the risk of cancers. It is necessary to have a monitoring system that helps people keep
tracking his/her eating behaviors. Traditional sensor-based and camera-based dietary monitoring systems either re-
quire users to wear dedicated devices or may potentially incur privacy concerns. WiFi-based methods, though yielding
reasonably robust performance in certain cases, have major limitations. The wireless signals usually carry substantial
information that is specific to the environment where eating activities are performed. To overcome these limitations,
we propose mmEat, a millimeter wave-enabled environment-invariant eating behavior monitoring system. In partic-
ular, we propose an environment impact mitigation method by analyzing mmWave signals in Dopper-Range domain.
To differentiate dietary activities with various utensils (i.e., eating with fork, fork and knife, spoon, chopsticks, bare
hand) for fine-grained eating behavior monitoring, we construct Spatial-Temporal Heatmap by integrating multiple
dimensional measurements. We further utilize an unsupervised learning-based 2D segmentation method and an eating
period derivation algorithm to estimate time duration of each eating activity. Our system has the potential to infer the
food categories and eating speed. Extensive experiments with over 1000 eating activities show that our system can
achieve dietary activity recognition with an average accuracy of 97.5% and a false detection rate of 5%.
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1. Introduction

Dietary is an important activity in people’s daily lives since it is closely related to individuals’ health conditions.
CDC shows that an unhealthy diet can cause obesity, diabetes, heart diseases, as well as increase the risk of over 13
types of cancers [1]. A recent study [2] has shown that unhealthy diet contributes to approximately 678,000 deaths
each year in the U.S. Thus, it is necessary to develop a monitoring system that can help individuals keep tracking their
dietary behaviors and offer them useful suggestions.

Eating behavior monitoring can provide essential information (e.g., food categories, eating speed) for dietary
behavior analysis and provide useful recommendations if poor dietary behaviors are detected. Traditional eating mon-
itoring systems [3, 4] use cameras to take images or videos of users to track their dietary information. However, those
vision-based methods may raise potential privacy concerns from collecting images or videos of users. In contrast,
some studies [5, 6] propose to use wearable sensors for dietary monitoring. Though sensor-based methods do not
raise privacy concerns, users are required to wear one or multiple sensors during eating, which is inconvenient and
impractical.

These inconveniences contribute to the emergence of device-free monitoring systems such as WiFi-based methods.
Lin et al. propose WiEat [7], which utilizes channel state information extracted from WiFi devices to recognize
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different dietary activities. However, as WiFi signals are sensitive to surrounding environments and are vulnerable to
interference, more stable and stronger signals are desired for eating monitoring tasks. Recent years have witnessed
the success of using mmWave signals for posture estimation [8] or activity recognition [9]. This is because mmWave
signals have more stable and higher-resolution with shorter wavelengths and stronger directivity. In this paper, we
propose to design an eating behavior monitoring system via mmWave techniques which have already been integrated
into the new generation WiFi standards (i.e., IEEE 802.11ad).

In order to utilize mmWave signals for eating behavior monitoring, several challenges should be addressed in
practice. First, people usually eat in different places (e.g., dining room, living room) every day. Traditional WiFi-based
eating monitoring systems that are trained in a specific environment will typically not work well when being applied in
a different environment. To solve this problem, in this work, we propose an environmental impact mitigation method
by subtracting the static component from every frame in the Dopper-Range domain. Our eating monitoring system is
environment-invariant and can be applied to new environments without extra training. Moreover, in the real world,
people might perform non-eating activities throughout the day. Hence, we develop a dietary activity detection method
to detect eating activities automatically based on the repetitive velocity pattern of eating activity in the time domain.
Furthermore, fine-grained eating behavior monitoring requires differentiation among eating activities with various
utensils (e.g, eating with a fork or spoon). However, different dietary activities are hard to be distinguished since they
all involve hand movements with similar ranges. To address this problem, we construct Spatial-Temporal Heatmap by
integrating velocity information from every distance measurement in the Doppler-Range domain and combining them
with time information. Besides, we utilize an unsupervised learning-based 2D segmentation algorithm to facilitate
accurate dietary activity recognition. We further develop a deep neural network to extract the unique characteristics
of every eating activity and classify them based on the utensils used (i.e., fork, fork&knife, spoon, chopsticks, bare
hand). In addition, to further derive detailed dietary behavior information, we estimate the eating period of every
eating activity and infer the eating duration and speed of meals.

The contribution of our works are summarized as follows:

• As far as we know, mmEat is the first eating behavior monitoring system using COTS mmWave radar sensor.

• Our proposed system constructs unique environment-invariant Spatial-Temporal signal representations that in-
tegrate velocity, time duration, and range of movement information.

• Our proposed system has the capability of eliminating environmental impact from static objects and differenti-
ating eating activities from daily activities. Moreover, we develop a fine-tuned deep neural network to facilitate
accurate dietary activity recognition.

• Extensive experiments with 6 people over 1000 eating activities show that our system can achieve dietary
activity recognition with an average accuracy of 97.5% and a false detection rate of 5%.

2. Related Work

Traditional eating monitoring systems widely use Vision-based methods [3, 4]. Such methods use cameras to take
images or videos when users eat meals for further analysis. DietCam [3] exploits photos or videos taken by commercial
mobile devices to perform dietary monitoring. Another system developed by O’Loughlin et al. [4] exploits Microsoft
SenseCams to capture videos and estimate the dietary energy intake. Such vision-based methods usually raise potential
privacy concerns since the camera may capture users’ private information such as social relationships and location
privacy.

Some existing work tend to use wearable sensors for dietary monitoring to avoid potential privacy concerns in
vision-based methods. Amft et al. [5] use a condenser microphone to detect air-conducted vibrations caused by
chewing to determine food textures. Zhang et al. [6] propose an accelerometer-based wearable device attached to
users’ wrists to detect eating activities based on the three-dimensional kinematics movement model. Though sensor-
based methods do not have privacy concerns, users are required to wear one or multiple sensors during eating, which
is inconvenient and impractical.

Recently, radio frequency (RF) signals have been proposed to address the above limitations. As a prevalent RF
sensing modality, WiFi signals have shown initial success in many activity recognition applications. Wang et al.
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Figure 1: Spatial-Temporal Heatmap of three eating activities.

develop E-eyes [10], which exploits WiFi signals to provide device-free human activity identification. Lin et al.
develop WiEat [7] that can achieve high accuracy in device-free dietary monitoring using commercial WiFi devices.
However, WiFi-based methods are sensitive to environmental changes. Millimeter wave (mmWave) has been proven
more robust than WiFi due to its high bandwidth and native beam-forming technology. Existing mmWave-based
systems like [8] and [9] often focus on posture estimation or activity recognition. None of them show that their
system can distinguish eating activities with minute differences in hand or finger movements and provide fine-grained
analysis of eating activities. This paper develops a system leveraging mmWave signals from commodity mmWave
devices to provide fine-grained dietary monitoring.

3. System and Methodology

3.1. Preliminaries
The intuition behind monitoring eating activity using mmWave is that eating activities with different utensils have

minute but different action components. For example, “eating with fork and knife” has a cutting action while “eating
with fork” does not. Such action components generate different reflections of mmWave signals that can be utilized for
eating activity monitoring. To demonstrate the feasibility of dietary activity recognition, we conducted experiments
by asking one participant to perform 3 dietary activities with different utensils (e.g., eating with fork, fork&knife, bare
hand) in an office. Specifically, a mmWave device (i.e., AWR1642) with a sampling rate of 100 frames/sec is placed
at one end of a table. The participant sits in front of the table with 1m away from the device while performing these
activities. As shown in Figure 1, the three Spatial-Temporal Heatmap of velocity, distance, and time duration have
significantly different patterns for the three eating activities.

3.2. System Overview
The goal of mmFit is to provide environment-invariant fine-grained eating behavior monitoring by leveraging a

single commercial mmWave device. Toward this end, we develop a low-cost mmWave-based eating behavior moni-
toring system, mmEat. The system takes as input the mmWave signals reflected from the human body. The system
first performs signal processing to derive the velocity, distance information of the user’s activity from the received
mmWave signals. Then, it eliminates the impact from environment by subtracting signals reflected off static objects.
Next, we construct Spatial-Temporal Heatmap to aggregate the instantaneous velocity from every distance measure-
ment in the Doppler-Range domain and combine them with time information. Such integrated multidimensional signal
representation can facilitate fine-grained activity recognition. We propose a dietary activity detection method based
on the repetitive eating activity patterns in the time domain to detect dietary activities based on the Spatial-Temporal
signal representation. To further differentiate eating activities, we apply DBSCAN [11] to cluster and segment each
activity, and develop a deep neural network to identify them. The last component of our proposed system is eating pe-
riod monitoring which estimates the eating period of each eating activity. Such information is useful to assist various
health-related problems, such as diabetes, heart diseases, etc. The overview of mmEat is shown in Figure 2.

3.3. Spatial-Temporal Signal Representation
Signal Preprocessing. We first perform range-FFT and Doppler-FFT on the received mmWave signals to derive

the distance and velocity information of user’s activity respectively. Then, we derive the Doppler-Range Heatmap
based on the instant velocity and distance measurements. As shown in Figure 3, the heatmap indicates the strength of
frequency responses of the reflected signals via the color. However, since static objects (e.g., furniture and walls) in the
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Figure 2: System overview of mmEat.

environments can also reflect mmWave signals, it is still hard to extract signals from the human in the Doppler-Range
Heatmap.

Environmental Impact Mitigation. To eliminate the environmental impact mentioned above, we propose an
environmental impact mitigation method by filtering out of non-moving objects in Doppler-Range domain. We note
that the frequency responses of the mmWave signals reflected from static objects in the environment (e.g., walls and
furniture) do not change over time. Therefore, we can eliminate the impact caused by static objects by subtracting
the time-invariant frequency response from the Doppler-Range Heatmap. In particular, we collect mmWave signals
in a static environment for a short period (e.g., 3 min) and derive the Doppler-Range Heatmap to estimate the time-
invariant frequency response.

Spatial-Temporal Heatmap Construction. Although the denoised Doppler-Range Heatmap can capture the
instant velocities at different distances, it is not enough to describe the process of the dietary activities. We propose a
more comprehensive signal representation by constructing the Spatial-Temporal Heatmap that contains the temporal
information of eating activities (e.g., time duration of each activity and variation of velocity with time). Specifically,
we accumulate the velocity measurements of each distance in every Doppler-Range Heatmap frame and then present
their dynamics in the time domain as follows:

Vq,t =

D∑
p=1

(fp,q,t)× vp,t, p ∈ [1, D], q ∈ [1, R], (1)

where fp,q,t is the strength of a frequency response in the Doppler-Range Heatmap, p is the doppler index, q is the
range index, and t is the frame index. vp,t is the velocity corresponding to a Doppler index p at frame t. Then we
normalize the derived Vq,t to [−1, 1] and map the original 2-dimensional Doppler-Range data to a more comprehensive
3-dimensional Spacial-Temporal Heatmap, which presents the process of the eating activities as shown in Figure 4.

3.4. Dietary Activity Classification
Dietary Activity Detection. After constructing Spatial-Temporal signal representations from mmWave signals,

we perform the dietary activity detection to determine whether the mmWave signals contain dietary activities or
not. We find that dietary activities usually have repetitive patterns in the Spatial-Temporal domain while non-dietary
activities do not. The reason is that dietary activities consist of repetitive hand and arm movements that bring food to
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Figure 3: Doppler-Range Heatmap when one user is eating
using a fork.

Figure 4: Spatial-Temporal Heatmap of four eating activi-
ties using a fork.

the mouth from the table. Based on the observation, we propose to detect dietary activities by searching the repetitive
patterns in the Spatial-Temporal Heatmap using a sliding window. Particularly, we accumulate the velocities from all
the distances at a particular time in a frame to transfer the heatmap to one-dimensional data. We use an autocorrelation-
based method to determine whether the mmWave signals contain a repetitive pattern or not. We empirically determine
that a dietary activity is detected when the number of peaks in the autocorrelation results is more than 5.

Dietary Activity Clustering and 2D Segmentation. Once a dietary activity is detected, the system performs
the dietary activity segmentation to focus on the signals related to dietary activities. The basic idea is to determine
each dietary activity’s time duration and range of movement in the Spatial-Temporal Heatmap. We first remove the
points with low absolute velocity from the heatmap based on an empirical threshold. Then, we utilize an unsupervised
learning-based clustering method (i.e., DBSCAN) to separate the points into different clusters. We design a dynamic
algorithm to determine the 2D window size of each activity based on its time duration and range of movement.
Particularly, for each cluster, we determine the window size based on the differences between the coordinates of the
edge points in the Spatial-Temporal plane. The box in Figure 4 illustrates the 2d segmentation results of our algorithm.
In addition, we scale up the size of the window by an empirical constant (i.e., 1.2) to ensure that it contains all the
signals related to dietary activities.

Deep Learning-based Classifier. We choose to use neural network-based method for final classification since it
has shown robust performance in image classification tasks [12]. The segments derived by the proposed segmentation
method are first resized to images with size of 224 × 224. Our convolutional neural network contains 9 layers. 3
convolutional layers are exploited for up-sampling, 3 Max Pooling layers with each follows a convolutional layer are
used for down-sampling. After the process of 3 rounds of up-sampling and down-sampling, a 64-dimensional feature
map is obtained and a flatten layer is followed to reduce the feature map into a one-dimension array. Two dense layers
at the end of the network will classify arrays into 5 categories, each category is mapped to a specific dietary activity.

3.5. Eating Period Monitoring
Researchers [13] have demonstrated that the speed of eating is an important factor for weight control. People

eating quickly have a significantly higher possibility of obesity. The basic idea of eating period monitoring is to derive
the accurate time duration of each eating activity and infer detailed eating information (e.g., eating period of a meal,
eating speed). Given that objective, we propose an eating period derivation method. We infer the time duration of each
eating activity based on calculating the interval with neighboring activities. Specifically, as shown in Figure 4, we
determine the beginning of each eating activity by searching the time stamp of the left edge from the 2D segmentation
box. We then estimate the eating period of each eating activity based on the differences between consecutive time
stamps. By estimating the time duration of each eating activity, we could further infer the accumulated eating period
using specific utensils during a meal, which could be used to estimate other high-level information such as the calorie
intake and nutrition balance. In addition, the number of eating activities during a meal and average eating period could
also be used to detect poor dietary behaviors of users, such as overeating and eating too quickly.

4. Performance Evaluation

4.1. Experimental Setup:
Devices: In our experiments, we use a single TI AWR1642 commercial mmWave radar equipped with a 2 × 4

antenna array. The radar operates at a frequency band between 77GHz and 81GHz with a sampling rate fixed at 100
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Figure 5: Experiment Setup.

frames per second. All devices are attached to a DELL G3 laptop for deep learning model inference.
Data Collection: We conduct the experiments by recruiting 6 volunteers (age from 22 to 40). The profiles are

collected at an office with a size of 5 × 3 m2. A total of 5 typical eating activities are performed by the volunteers.
Over 1000 eating activity data are collected and the ground truths are measured and verified by camera-based method
during the experiments. As is shown in Figure 5, we totally test three different positions and three distances (1m,
1.5m and 2m) to evaluate impact of device positions and distances. For the evaluation of environment impact, we
collect data under three different environments: A). a lounge with a size of 4 × 4 m2; B). a corridor with a size of
5× 9 m2; C). a classroom with a size of 9× 15m2.

Evaluation Metrics: We define four different evaluation metrics: Dietary Activity Recognition Accuracy is the
percentage of predicted dietary activities that are correctly recognized among all activities; False Detection Rate
(FDR) is defined as the ratio between the number of incorrectly classified activities and the total number of activities.
Confusion Matrix visualizes the percentage of a specific activity being identified among all the activities. Estimated
Error defines the difference between the estimated eating duration and actual eating duration for a single dietary
activity.

4.2. Performance of Dietary Activity Classification
In this section, we first compare the overall performance of the proposed CNN-based classification method with

traditional classifiers. Figure 6 demonstrates the overall recognition accuracy and FDR of five classifier. Our CNN-
based method outperforms all four traditional methods and achieves 96.78% in recognition accuracy and 3.3% in FDR.
We then show the dietary activity classification for five activities. As shown in Figure 7, the recognition accuracy for
all activities are higher than 90%. The accuracy of using bare hand is a little lower than other activities, because the
body movement of using bare hand is similar to that of using spoon, which may cause some confusion to the classifier.
The result confirms that our CNN-based classifier can achieve robust performance in dietary activity classification.

4.3. Impact of Different Environments
We then evaluate the impact of different environments on system performance. In particular, we collect data from

three different environments mentioned in section 4.1. We use data from one environment as the training set and data
from the other two environments as the testing set and try different training-testing pairs. As demonstrated in Figure 8,
all of the training-testing pairs achieve classification accuracy over 88% and with FDR below 9% even the training set
and testing set are collected from different places. This result proves that our system is able to offer domain-invariant
performance under different environments.

4.4. Impact of Different Device Position
Different positions of the device may affect the accuracy of dietary activity classification. We study the impact

of device position on our CNN-based classifier. We evaluate three positions demonstrated in Figure 5. As shown
in Figure 9, at all three positions, our system maintains an FDR lower than 4%. The accuracy of position P1 and
position P2 are slightly lower than that of default position S. This is because when the device is located at a position
not facing the user, user’s arms are parallel to the device, causing weaker Doppler effects and vaguer Spatial-Temporal
Heatmaps. But our system still maintains an accuracy over 94%. The result proves that our system can still maintain
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Figure 6: Confusion matrix of dietary activity classification using CNN-based classifier.

Figure 7: Performance Comparison among four traditional
machine learning and CNN-based classifier.

Figure 8: Impact of environment.

Figure 9: Impact of different positions of mmWave device
in office.

Figure 10: Comparison of eating period estimated error.

a good performance in dietary activity classification even the device is situated at different positions. We also test the
system at three distances (i.e., 1m, 1.5m, 2m) at position S and find that the performance is not affected.

4.5. Performance of Eating Period Monitoring
We next evaluate the performance of eating period monitoring for different food intake activities. In our exper-

iments, each of the 5 activities is performed 160 times and we collected 800 eating activities in total. As shown in
Figure 10, the average estimated error (indicated by red points) of using fork, fork&knife, spoon, chopsticks and
bare hand are 67ms, 88ms, 141ms, 67ms and 124ms, respectively, which are all within 150ms. Additionally, the
estimated error for all the collected activities are all smaller than 400ms. The results demonstrate that our proposed
system can precisely estimate eating period and maintain a low estimated error for different activities. Furthermore, by
calculating the average time duration of each eating activity, we can estimate users’ eating speed and infer high-level
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information such as calories intake or analysis of nutritional balance. The detailed dietary information can be further
used to assist the healing of various health problems caused by bad eating habits.

5. Conclusion

In this paper, we explore the feasibility of using mmWave signals for fine-grained dietary behavior monitoring. We
show that the proposed CNN-based eating behavior monitoring system is environment-invariant and can be applied to
new environments without extra training efforts. We also demonstrate the potential of the proposed system to provide
users with comprehensive understanding of their eating behaviors and help them get rid of unhealthy dietary habits.
Extensive experimental results show that our system can achieve dietary activity recognition with over 97.5% average
accuracy and less than 5% FDR.
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