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Abstract—Maintaining concentration in today’s complex and
distracting environments is increasingly challenging, with sig-
nificant impacts on productivity, learning outcomes, and safety.
Traditional methods like self-reporting and observational studies
are subjective and labor-intensive. Current approaches, including
camera-based systems and wearable sensors, raise privacy con-
cerns and require continuous physical interaction. To address
these limitations, we propose a novel, contactless concentra-
tion monitoring system using mmWave technology. Our system
leverages Commercial-Off-The-Shelf (COTS) mmWave devices
to detect concentration-related activities, such as eye blinking,
nodding, yawning and leg shaking. In particular, we enhance
the activity detection and overcome the limited field of view
(FOV) of mmWave devices through spatial decomposition based
on Delay-and-Sum (DAS) beamforming technologies. Moreover,
we mitigate interference in concurrent activities by exploiting
the distinct frequency ranges associated with each concentration-
related activity based on Short-Time Fourier Transform (STFT).
A CNN model, integrated with domain adaptation techniques,
ensures robust performance in diverse environments. Experi-
ments involving 10 volunteers demonstrated an overall accuracy
of 95.3% in detecting human activities. The system maintained
robust performance at distances up to 150 cm and across dif-
ferent office environments. Our method offers a contactless and
privacy-preserving alternative to current approaches, making it
suitable for applications such as classroom monitoring, workplace
productivity observance, and cognitive health monitoring.

Index Terms—mmWave sensing, Concentration monitoring,
Activity recognition, Machine Learning

I. INTRODUCTION

Concentration is a fundamental cognitive function that

plays a crucial role in determining a person’s productivity,

learning outcomes, and personal safety across a wide range

of environments, from classrooms to workplaces and safety-

critical settings [7]. Despite its importance, maintaining focus

has become increasingly challenging due to the demands of

modern life. The growing complexity of daily tasks and the

constant distractions reveal a significant gap in our ability

to effectively monitor and sustain concentration. This gap is

particularly concerning given the rising prevalence of attention-

related disorders, such as Adult Attention Deficit Hyperactivity

Disorder (ADHD), with recent studies reporting a substantial

increase in diagnoses among adults [2]. Therefore, effective

Fig. 1: Application scenarios for human concentration moni-

toring using mmWave signals.

concentration monitoring is highly desired, as it is crucial

for identifying factors that contribute to distractions, and for

enabling the design of more focused and productive envi-

ronments. To meet this need, in this paper, we develop a

system that leverages millimeter wave (mmWave) technol-

ogy to perform concentration monitoring. As illustrated in

Fig. 1, such a system can be particularly useful in educational

environments by helping teachers identify periods of high

student engagement, allowing for optimized lesson pacing and

content delivery. It could also assist in early detection of

attention difficulties, enabling timely interventions for students

who may need additional support. In the field of psychology,

the technology could be used to count the unconcentrated

behaviors and help the psychologists to analyze the correlation

between concentration levels and those distracted behaviors.

Traditional approaches, such as self-reporting [5] and obser-

vational studies [22], have been widely used in concentration

assessment. Self-reporting provides a direct insight into an in-

dividual’s perceived concentration levels and is straightforward

to implement. However, self-reporting is subjective and can

be influenced by self-awareness or a desire to give favorable

impressions [20]. Observational studies, conducted by trained

professionals, offer detailed qualitative data on concentration

behaviors but are labor-intensive and may unintentionally alter

the subject’s natural behavior due to the observer’s presence

[23]. Researchers have explored wearable sensors to measure

physiological indicators of concentration such as heart rate

variability (HRV) [4], skin conductance [24], and even brain



activity through electroencephalogram (EEG) [27]. These sen-

sors provide accurate, real-time data and can be used in various

environments. However, they require direct contact with the

user, which can be uncomfortable or impractical for long-term

use.

Recent research has identified several activities which are

strongly correlated with concentration levels. These activities

include leg shaking, eye blinking, nodding, and yawning. Leg

shaking can indicate restlessness or a decline of focus [26], and

is also associated with ADHD [1]. Changes in eye blinking

rate can indicate varying levels of cognitive engagement [17].

Similarly, frequent nodding or yawning might suggest fatigue

or waning attention levels [12] [33], providing crucial insights

into an individual’s concentration patterns over time. These

behaviors serve as valuable indicators for assessing an indi-

vidual’s cognitive state, making them ideal for contactless con-

centration monitoring. Building on these findings, researchers

have developed camera-based systems to capture subtle facial

expressions [30], eye movements [6], and body language [21]

to infer concentration levels. While these systems provide

the advantage of passive monitoring without requiring active

participation, they often raise significant privacy concerns.

Recently, millimeter wave (mmWave) technology has been

integrated into current and next-generation wireless protocols,

such as WiGig (IEEE 802.11ad and 802.11ay) [11] and

5G [9], expanding its potential for widespread adoption and

application. Leveraging this technology, researchers have suc-

cessfully applied mmWave sensing to a wide range of activity

recognition tasks. For instance, Wang et al. [29] demonstrate

the use of WiFi signals for human activity recognition. Liu

et al. [16] develop a mmWave-based system that accurately

recognizes arm gestures. These successes motivate us to

leverage mmWave technology for concentration monitoring

based on recognizing concentration-related activities. However,

existing mmWave-based approaches for activity recognition

cannot be directly applied to the task of concentration-related

activity monitoring given the following challenges: (1) The

120-degree field of view (FOV) of Commercial-off-the-Shelf

(COTS) mmWave devices limits their ability to capture full-

body movements, especially when the mmWave device is

positioned on a desk to monitor concentration while someone

is working at a computer. In such a setup, the device typically

focuses on upper body movements, but may miss crucial lower

body indicators like leg shaking, which can also signal changes

in concentration; (2) Separating concurrent-related activities

is challenging, as subtle movements such as eye blinking

often occur simultaneously with other activity like yawning

or nodding, complicating accurate detection and classification

of concentrated versus unconcentrated states; (3) Deploying

the system in new environments can be challenging, as even

small changes in the layout of desks or nearby objects may

alter the signal propagation path, potentially affecting system

performance.

To overcome the aforementioned challenges, we develop

a system that contactlessly monitors concentration-related ac-

tivities using mmWave technology. Our approach employs

a multi-stage signal processing pipeline that includes noise

reduction and spatial-temporal feature extraction to isolate sub-

tle concentration-related movements. To overcome the limited

FOV of COTS mmWave devices, we develop a spatial de-

composition approach using the Delay-and-Sum (DAS) beam-

forming technique to enhance signals reflected from specific

body parts involved in different activities. For detecting lower

body movements, particularly leg shaking, we resort to an

innovative indirect approach. By monitoring subtle movements

induced in the belly area, we can infer leg activity even when

the legs are obscured (e.g., under a table). This approach

exploits the fact that leg shaking induces subtle yet detectable

vibrations that propagate through the body. Moreover, to tackle

the challenge of concurrent activity monitoring, we leverage

frequency domain analysis to detect dominant frequencies of

different activities. By decomposing the mmWave signals into

their frequency components, we can simultaneously monitor

multiple activities while mitigating interference between them.

This process, combined with the spatial information extracted

earlier, ensures accurate differentiation of concurrent activities.

To enhance adaptability across different environments, we first

employ a Convolutional Neural Network (CNN)-based model,

which is highly effective at extracting spatial features from

activity data. Further, to handle variations in the environment,

we integrate domain adaptation techniques, making the feature

extraction process domain-independent. This enables the sys-

tem to reliably detect concentration-related activities with the

presence of environmental factors. The main contributions of

our work are as follows:

1) We develop a novel mmWave-based system for con-

tactless and privacy-preserving concentration monitoring.

This system addresses the growing need for unobtru-

sive methods to assess cognitive states in various set-

tings, including workplaces, educational environments,

and healthcare facilities.

2) We implement the beamforming technologies to address

the limited FOV of mmWave radar, utilize an indirect

monitoring for belly movements, allowing for the detec-

tion of subtle shakes associated with concentration-related

activity.

3) We design a novel peak frequency identification algo-

rithm that accurately captures and separates concurrent

concentration-related activities through frequency analy-

sis, overcoming the challenge of concurrent activities.

4) We integrate domain adaptation techniques into the sys-

tem, ensuring the feature extraction process is robust

and environment-independent, allowing reliable detection

of concentration-related activities across diverse settings

with varying layouts and surrounding objects.

5) We conduct experiments with 10 volunteers performing

multiple concentration-related activities under different

environmental conditions to evaluate the system’s perfor-

mance across various real-world scenarios. Results show

that our system can achieve an overall accuracy of 95.3%

for concentration-related activities identification.



II. RELATED WORK

Sensor-based. Traditional methods for concentration mon-

itoring primarily rely on wearable sensors [10, 27]. Han

et al. [10] present a stress monitoring system based on

three physiological signals: electrocardiogram (ECG), pho-

toplethysmogram (PPG), and galvanic skin response (GSR)

using Shimmer3 ECG, Shimmer3 GSR+, and Empatica E4

wearable sensors. Similarly, Velnath et al. [27] propose to

extract different features from the collected EEG signals.

The level of concentration is determined by comparing the

features extracted from individuals of different age groups.

However, wearable sensors, particularly those based on brain

wave measurements such as EEG electrode caps or patches,

can be cumbersome and intrusive. Furthermore, the need to

remove and put back these devices during temporary breaks

in monitoring disrupts the user experience and may lead to

inconsistent data collection.

Camera-based. Camera-based technologies have emerged

as a popular method for detecting user concentration levels due

to their relative convenience and non-invasive nature. These

systems typically analyze limb movements, eye behavior,

pupil dilation, or facial expressions to infer a user’s level

of concentration [14, 19, 25]. Meriem et al. [19] find that

students’ emotions, inferred through facial expressions, are

related to their attention levels. They develop a computer

vision-based method to classify attention into three levels by

correlating these emotions with students’ concentration during

class. Moreover, Lee et al. [14] propose a personal attention

level monitoring system that focuses on users’ pupil responses

and blinking patterns while they perform online tasks on

a computer. Tanaka et al. [25] utilize a camera based eye-

tracker to explore a pipeline for constructing machine learning

models to recognize the state of concentration using eye-gaze

data during reading. However, camera-based solutions, while

effective, are vulnerable to environmental variables, especially

lighting conditions, which can compromise data accuracy

and reliability. Furthermore, the persistent capture of visual

information raises significant privacy concerns, potentially

deterring widespread adoption.

RF-Based. To address the mentioned weaknesses, re-

searchers have explored WiFi-based solutions for their con-

venience and sensing capabilities [8, 28]. Guo et al. [8]

propose a device-free exercise recognition and assessment

scheme using existing WiFi infrastructures. Wang et al. [28]

study the domain variation problem and design a robust WiFi

sensing framework. While WiFi technology can recognize

user actions, it has not yet been used to infer concentra-

tion levels. Meanwhile, mmWave sensing is gaining attention

with the development of IoT, 5G, and autonomous driving

technologies [31]. It offers contactless, fine-grained sensing

of humans and objects [32]. Due to its low cost and non-

intrusive nature, mmWave-based human activity sensing has

become a significant research area. Cardillo et al. [3] use

120 GHz radar to detect head movements and eye blinking,

aiding communication for individuals with neurodegenerative

disorders. Juncen et al. [12] develop techniques to filter noise

from driving-related activities, accurately detecting driver fa-

tigue. Thus, we can leverage RF-based action recognition to

infer concentration. Our mmWave radar-based approach pro-

vides a non-intrusive, privacy-preserving alternative to camera,

EEG, and eye-tracker systems, allowing continuous monitor-

ing without the discomfort of wearables. By integrating signal

processing and machine learning, our method isolates and

analyzes concentration-related movements, offering reliable

performance in various settings like education and cognitive

health.

III. PRELIMINARIES

A. mmWave Radar Fundamentals

This work utilizes an FMCW mmWave radar to detect user

macro and micro-actions. The radar continuously transmits

chirp signals that linearly sweep through a frequency band-

width B over a chirp duration of Tc. The sweep slope is

therefore S = B
Tc

. The received signal is a delayed version of

the transmitted signal due to the time it takes to travel through

space. By calculating the frequency difference between the

received and transmitted signals (i.e., beat frequency), we can

directly determine the propagation time of the electromagnetic

wave. Using the speed of the electromagnetic wave c, the

propagation distance of the FMCW signal in space can be

accurately calculated.

1) Range Estimation: The range information reveals the

user’s location and the relative positions of different body

parts, such as the arms, stomach, legs, and head. To determine

the range of these body parts, we apply a Fast Fourier

Transform (FFT), specifically a range-FFT, on the time-domain

intermediate frequency (IF) signal. When the user is within

the field of view, the strong frequency response from their

body creates peaks at various IF frequencies, corresponding

to different body parts. The distance between each reflected

point and the radar can then be calculated as follows:

d =
fIF · c · Tc

2 ·B
=

fIF · c

2 · S
, (1)

where fIF is the frequency of the intermediate frequency (IF)

signal, c is the speed of the light, Tc is the period of one

chirp, B is the bandwidth of the FMCW radar, and S is the

chirp slope. The centimeter-level distance resolution of FMCW

millimeter-wave radar enables it to precisely differentiate

between the positions of an individual’s head, limbs, and

torso. Using range-FFT, we can divide the received signal into

different range bins based on the distance from the reflection

point to the radar’s receiving antenna.

2) Angle Estimation: There are also situations where multi-

ple reflection points fall into the same range bin but originate

from different angles. For instance, when a user faces the

mmWave radar, the distances from both arms to the radar’s

receiving antenna are nearly identical. For the same signal

source, the distance of its reflected signal to different receiving

antennas varies slightly, leading to small phase differences.

The distance d between the reflected signal and the receiving



antenna is related to the distance l between the receiving an-

tennas and the incident angle θ of the signal source. Knowing

the arrangement and spacing of the receiving antennas, as well

as the phase difference ω of the received signal, allows us to

accurately calculate the angle of the signal source relative to

the receiving antenna within the FOV. This phase difference

across multiple TX antennas can then be used to estimate the

angle of arrival (AOA) as follows:

θ = sin−1(
λ · ω

2πl
). (2)

3) Micro Displacement Estimation: Concentration-related

activities involve subtle movements that require high-precision

detection. To accurately capture these micro-movements, we

need a detection granularity on the order of millimeters. The

standard FMCW radar range resolution, typically around 4 cm,

is not precise enough for detecting such subtle motions. By

unwrapping the IF signal phase, we can extract micro displace-

ments of the signal and achieve the required millimeter-level

granularity because phase measurements are inherently more

sensitive than amplitude measurements and the wavelength of

mmWave signals is on the same order as the movements we

aim to detect. The phase difference ∆Φ(t, t − Tc) of the IF

signal in a single range bin between two consecutive chirps

at time t allows us to calculate the micro-distance change

∆d(t, t− Tc) between time t and t− Tc:

∆d(t, t− Tc) ≈
c ·∆Φ(t, t− Tc)

4πfc
. (3)

In this paper, we utilize the extracted phase information from

the IF signal to monitor concentration-related movements.

B. Feasibility Study

We conduct experiments with a volunteer to test the ca-

pability of millimeter-wave radar in detecting concentration-

related activities. Specifically, we used the AWR1642 FMCW

millimeter-wave radar, positioning it at a fixed location. The

distance between the radar and the volunteer was set to 0.5

meters. To ensure consistency in data collection, the volunteer

performed each activity with a 5-second interval, which helps

distinguish between small and large movements related to

concentration. The volunteer is asked to perform specific

activities, such as eye blinking, leg shaking, nodding, and

yawning, to assess the radar’s ability to detect these behaviors.

We extract phase difference information from mmWave

signals to detect concentration-related activities and compare

the phase patterns of different activities. The phase data is

derived from raw mmWave radar signals and processed to

capture subtle movements associated with each activity. Fig. 2

shows these phase plots, where each graph illustrates the phase

changes over time for specific activities like blinking, shaking,

nodding, and yawning. By analyzing this phase data, we can

observe and differentiate between the distinct phase change

patterns associated with each activity. In this figure, the x-axis

represents the duration of the activities, while the y-axis shows

the phase changes. The ground truth, captured through camera

recordings during the experiments, aligns with the phase

Fig. 2: Phase patterns corresponding to four concentration-

related activities: eye blinking, leg shaking, nodding, and

yawning. Each activity is performed twice with a 5-second

interval between occurrences. The ground truth for each activ-

ity is marked with a red rectangle.

changes, confirming the occurrence of specific activities. For

example, the “Blink” plot reveals subtle, rapid phase changes

corresponding to each blink, reflecting the small, quick nature

of this action. The “Shake” plot displays more pronounced,

periodic phase changes with higher amplitude, consistent with

the vigorous, repetitive motion of leg shaking. The “Nod”

plot shows smoother, more gradual phase variations, indicative

of the moderate, rhythmic motion of nodding. Finally, the

“Yawn” plot exhibits significant amplitude in its phase changes,

reflecting the larger, sustained motion of yawning. These

observations demonstrate that each activity has unique phase

characteristics, with different frequency components and the

amplitude of phase changes. This allows us to distinguish be-

tween the activities based on their specific phase information.

IV. SYSTEM DESIGN

The proposed system is designed to continuously monitor

concentration-related activities using mmWave technology by

extracting phase features from radar signals. The system is ca-

pable of detecting both concentration-related activities—such

as eye blinks, leg shaking, nodding, yawning, and non-

concentration-related activities. As illustrated in Fig. 3, the

Signal Preprocessing Module processes the collected mmWave

signals to mitigate environmental impacts and reducing noise

using the proposed two-stage filtering approach. Next, the

Enhansing Activity Detection Through Spatial Decomposition

Module employs a delay-and-sum (DAS) beamforming tech-

nique to enhance signals reflected from specific body parts

associated with different activities (e.g., eye blinking in the

upper body, leg shaking in the lower body). This module

also determines the distances and angles for extracting each

activity using range-angle heatmap. Furthermore, the Distin-

guish Concurrent Activities Module mitigate the interference

in concurrent activities by employing dominant frequency de-

tection through Short-Time Fourier Transform (STFT) on the

extracted phase information. For continuous monitoring, the

Concentration-Related Activities Recognition Module further

segments the extracted phase data, isolating individual activity



Fig. 3: System overview of the proposed system.

instances. Each segment is then fed into a CNN model for

multi-label classification. In addition, the system incorporates

Domain Adaptation to ensure the CNN model’s feature extrac-

tor remains domain-independent, capable of extracting reliable

activity features even the domain (e.g., environment) has been

changed.

V. METHODOLOGY

A. Signal Preprocessing

Raw mmWave signals are inherently noisy and subject to

interference from static objects and non-target movements,

which can reduce the accuracy of target detection and range

estimation. To enhance signal quality and isolate the relevant

information, we employ a two-stage filtering approach. First,

we apply a Finite Impulse Response (FIR) low-pass band filter

to attenuate high-frequency noise while preserving the fre-

quency content of concentration-related activities. Specifically,

the output y[n] of the FIR filter is given by:

y[n] =

M
∑

k=0

bkx[n− k], (4)

where bk are filter coefficients, x[n] is the raw IF data, and

M is the filter order. For our application, we set the cutoff

frequency to 10 Hz to preserve movements in the 0.1-8 Hz

range. By applying the FIR filter on the IF signal, the system

attenuates unwanted high-frequency noise while preserving

the beat frequency (i.e., difference in frequency between the

transmitted chirp signal and the received reflected signal.)

that contains the range information for the target. This step

helps to improve the signal-to-noise ratio (SNR), leading to

more accurate target detection and range estimation. After

(a) Original Phase vs. Time (b) Noise Mitigated Phase vs. Time

Fig. 4: Human body reflected mmWave signal phase pattern

before and after the proposed two-stage noise mitigation.

filtering, we perform a range-FFT on the filtered IF signal,

and extract phase information from the range-FFT output. To

further reduce noise while preserving essential signal features,

we apply a Savitzky-Golay smoothing filter to the extracted

phase data. The smoothed output y∗i is given by:

y∗i =
m
∑

n=−m

cnyi+n, (5)

where cn are convolution coefficients, 2m+ 1 is the window

size, and yi is the phase data extracted from the range-FFT

output. We optimize this filter using a 3rd-degree polynomial

and a window size of 50 samples, to smooth rapid fluctuations

while maintaining the distinct peaks of eye blinks and the

periodic patterns of leg shaking. Fig. 4 shows the extracted

phase data before and after applying the proposed two-stage

filter, highlighting the effectiveness of the filtering method in

reducing noise in the mmWave signals.

B. Enhancing Activity Detection Through Spatial Decomposi-

tion

1) Body Part-Specific Signal Extraction via Beamforming:

In typical scenarios where a user is seated at a desk, working

in front of a computer, the mmWave radar is fixed in place,

capturing all movements within its FOV, which is generally

limited to 120 degrees. In this configuration, concentration-

related activities may occur simultaneously and such concur-

rent nature makes it challenging to distinguish and isolate the

signals associated with each body part, particularly when lower

body movements are obscured (e.g., legs are under a table). To

address this challenge, we develop a body part-specific signal

extraction based on Delay-and-Sum (DAS) beamforming tech-

nique [12]. In DAS beamforming, the signals received by an

array of antennas are combined by applying appropriate time

delays to each signal, such that signals from a desired direction

are aligned and summed constructively. By enhancing radar

signals at specific angles, beamforming allows us to selectively

focus on spatial regions corresponding to different body parts,

improving our ability to isolate and analyze concentration-

related activities. In particular, the DAS beamforming output

y(t) for a given direction θ is expressed as:

y(t, θ) =

N
∑

n=1

wnxn(t− τn(θ)), (6)

where xn(t) is the signal received by the n-th antenna, wn is

the weighting factor, and τn(θ) is the time delay applied to



steer the beam in the direction θ. For upper body detection,

the system focuses on angles within the radar’s FOV that

correspond to the head and torso, typically in the range

θ = 30o− 90o. In this range, the system can analyze reflected

signals to detect concentration-related activities such as eye

blinking, nodding, and yawning. To detect lower body activ-

ities, particularly leg movements like shaking or tapping, the

system indirectly monitors subtle movements in the belly area,

which typically corresponds θ = 0o − 30o. Leg movements

generate small but detectable shifts in the body’s posture and

motion, which propagate upwards and cause minor vibrations

or movements in the torso, especially the belly area. This

approach allows the system to infer leg movement even when

the legs are obscured (e.g., under a table) and are not within

the radar’s direct line of sight.

2) Activities Localization based on Range-Angle Heatmap:

Building on the beamforming technique, we enhance the

system’s ability to detect and localize concentration-related

activities by leveraging range-angle heatmaps within each

beamformed region. This approach improves the detection of

subtle movements, such as eye blinking, yawning, and nodding.

To accurately identify and track these activities, we develop an

activity localization algorithm that effectively localizes these

movements. For a given activity a in region k, we calculate

the signal amplitude Aa,k(t, θ, R):

Aa,k(t, θ, R) = |yk(t, θ, R)|, (7)

where |yk(t, θ, R)| represents the magnitude of the filtered sig-

nal at time t, angle θ, and range R for region k. This amplitude

information is then used to construct a range-angle heatmap

that visualizes the spatial distribution of signal intensities

across different regions of the body. On the obtained heatmap,

we apply clustering and temporal tracking of high-amplitude

regions. By grouping areas of consistent signal intensity over

time, we can accurately localize and differentiate simultaneous

activities occurring in both the upper and lower body. This

range-angle heatmap approach allows the system to focus on

localized areas of interest, ensuring precise detection even

when multiple activities occur simultaneously. We identify the

key parameters, such as angles and distances, that correspond

to the highest and most consistent signal amplitudes for each

movement, allowing us to effectively localize each activity.

Fig. 5 shows the range-angle heatmap generated following

the application of the Delay-and-Sum (DAS) beamforming

technique, with a participant seated 50 cm in front of the

mmWave radar. This visualization enables precise localization

and tracking of multiple activities across the body, enhancing

the system’s ability to detect and differentiate between subtle

movements in both the upper and lower body regions.

C. Distinguishing Concurrent Activities

1) Mitigating Interference in Concurrent Activities Using

STFT: Building on the spatial separation of concurrent move-

ments via beamforming and range-angle heatmaps, this section

addresses the challenge of mitigating interference between

simultaneous activities. In seated scenarios, leg movements

Fig. 5: Range-angle heatmap after applying the proposed DAS

Beamforming technique, captured while a volunteer sits 50 cm

in front of the mmWave radar.

often propagate through the body, generating vibrations that

influence the radar’s phase readings. These larger motions

complicate the detection of subtle movements, as the radar

captures a composite signal that reflects both leg shaking

and smaller activities such as eye blinking. As a result,

distinguishing between these overlapping signals is non-trivial.

To address challenge, we exploit the distinct frequency

ranges associated with each concentration-related activity.

Each activity has a characteristic frequency range: eye blinking

(0.5 - 2 Hz) [13], leg shaking (4 - 8 Hz) [18], nodding (0.5

- 2 Hz) [12], and yawning (0.1 - 0.5 Hz) [33]. However,

since some activities like eye blinking and nodding share the

same frequency range, we combine the frequency analysis

with the spatial decomposition results from the beamforming

step. By leveraging both the spatial and frequency-domain

characteristics, we can accurately differentiate activities based

on their location and their corresponding frequency signatures.

We apply a Short-Time Fourier Transform (STFT) to the

filtered radar signal, enabling time-frequency analysis that

captures the spectral content of the signal at different time

intervals. This method helps isolate the frequency components

corresponding to each activity and mitigate interference from

concurrent movements. After that, we use a peak detection

algorithm to identify the dominant frequencies. The process

is as follows: (1) Magnitude Spectrum Calculation: We

compute the magnitude spectrum: |X [m, k]| from the STFT,

yielding a time-frequency representation of the mmWave

signal x[n]. This representation reveals the signal’s spectral

content at specific time intervals m. (2) Local Maximum

Identification: We detect local maxima in |X [m, k]| that

exceed a predetermined threshold δ, allowing us to identify

the dominant frequencies:

P [m] = {k : |X [m, k]| > |X [m, k − 1]| and

|X [m, k]| > |X [m, k + 1]| and |X [m, k]| > δ}.
(8)

(3) Peak Selection and Sorting: The identified peaks in P [m]
are sorted by magnitude, and the top Npeaks are selected.

(4) Filtering Peaks by Frequency Range: The peaks are

then filtered based on the expected frequency ranges for each

activity. For instance, frequencies between 0.5 - 2 Hz are

retained for detecting eye blinking and nodding, while higher



Fig. 6: CNN model achitecture for the proposed system.

frequencies (4 - 8 Hz) are used for leg shaking. This filtering

step ensures that only the relevant frequencies for each target

activity are considered.

D. Concentration-Related Activities Recognition

1) Activity-Related Signal Extraction and Segmentation:

After mitigating interference between concurrent activities

using frequency-domain analysis and spatial decomposition,

we proceed to extract and segment phase information for each

activity identified within the corresponding frequency peaks.

To ensure consistency across different measurements, we first

normalize the unwrapped phase facilitating the segmentation

process. This process divides the continuous phase signal into

discrete segments, with each segment potentially correspond-

ing to an occurrence of a distinct activity or movement. The

segmentation process is described as follows:

Si(t) =

{

1, if 1

W

∑t+W/2
j=t−W/2 |φnorm(j)− µi| > τ

0, otherwise
, (9)

where φnorm(t) is the normalized phase signal, Si(t) is the

segmentation result for activity i at time t, W is the sliding

window size, µi is the mean phase value for activity i, and

τ is the threshold for activity i. The mean phase is derived

empirically for each activity, based on its typical phase behav-

ior observed during training. The system detects an activity by

identifying when the normalized phase deviates significantly

from this mean phase value. The thresholds are set for each

activity according to its characteristic phase patterns, allowing

the segmentation to accurately capture the start and end of

each activity.

2) Feature Extractor: After segmenting the phase signal,

the system uses a CNN model to classify concentration-

related and non-concentration-related activities. The CNN’s

feature extractor captures both local features, such as a single

blink or nod, and global features, like sustained leg shaking,

enabling accurate classification of various activities. As shown

in Fig. 6, the CNN processes a 5000-point phase segment

through two 1D convolutional layers (64 filters) and max

pooling layers, progressively extracting more complex features.

The final output is flattened into a 1D vector for classification.

This hierarchical structure allows the model to effectively

differentiate between similar activities and adapt to individual

movement variations.

3) Multi-Label Classifier: To distinguish between

concentration-related and non-concentration-related activities,

we implement a Multi-Label Classifier. This classifier

interprets the features extracted by the Feature Extractor

and translates them into activity predictions. The classifier

architecture consists of a dense layer with 64 units, using

ReLU activation to capture non-linear relationships. This is

followed by an output layer with five units—four representing

concentration-related activities and one for non-concentration-

related activities—using sigmoid activation. The use of

sigmoid activation allows the system to detect multiple

activities simultaneously. By leveraging the CNN’s feature

extraction capabilities, the classifier can differentiate between

subtle and similar movements, ensuring precise recognition

of both concentration-related and non-concentration-related

activities.

4) Domain Adaptation via Transfer Learningn: A key

challenge is that new environments can impact system per-

formance, as changes in surroundings affect the reflected

radar signal. To address this, we integrate domain adaptation

techniques into the feature extraction process, implementing an

Adversarial Autoencoder (AAE) architecture with Maximum

Mean Discrepancy (MMD) regularization [15]. The feature

extractor acts as the encoder, producing latent representations

optimized for both activity classification and environmental

invariance. A decoder is introduced to reconstruct the original

input from these latent features, while a discriminator aligns

the feature distribution with a Laplace prior [32]. The system

is optimized using a multi-component loss function:

Ltotal = λrLr + λmLm + λaLa, (10)

where Lr is the reconstruction loss defined by:

Lr =
1

N

N
∑

i=1

MSE(pi, p̂i), (11)

where Mean Squared Error (MSE) measures the difference

between the original input pi and its reconstruction p̂i, en-

suring essential information is retained in the latent features.

To calculate this, we introduce a decoder alongside our en-

coder (feature extractor). The encoder compresses the input

into a latent representation, while the decoder attempts to

reconstruct the original input from this representation. This

process ensures that the extracted features retain essential

information about the input. The Maximum Mean Discrepancy

(MMD)-based Environment Alignment Loss (Lm) encourages

the encoder to produce similar feature distributions across

different environments:

Lm = max

(
∥

∥

∥

∥

∥

1

Nu

Nu
∑

i=1

E(pu,i)−
1

Nv

Nv
∑

i=1

E(pv,i)

∥

∥

∥

∥

∥

, 0

)

,

(12)

where E(·) is our encoder function, and pu,i and pv,i represent

samples from two different environments. The adversarial loss

La ensures the latent features follow a Laplace distribution,

helping capture variability in human movement:

La =
1

N

N
∑

i=1

MSE(hi, li), (13)



(a) (b)

Fig. 7: (a) Experiment setup (device displacement). (b) Envi-

ronment illustration (Office 1, Office 2, Office 3).

Fig. 8: Confusion matrix illustrating the classification perfor-

mance for eye blinking, leg shaking, nodding, yawning, and

non-concentration-related (NC) activities.

where hi represents the latent features, and li are samples

drawn from a Laplace distribution. By jointly optimizing these

loss components, we ensure that the extracted features are

discriminative for activity classification, invariant to environ-

mental changes, and retain essential input information. This do-

main adaptation strategy enhances the system’s generalization

across diverse environments, ensuring reliable concentration-

related activity detection.

VI. PERFORMANCE AND EVALUATION

A. Evaluation Setup and Methodology

1) Device Configuration: We implement the proposed sys-

tem using a single commercial COTS mmWave device: Texas

Instruments AWR1642 mmWave radar with a DCA1000EVM

data capture and streaming card. Our mmWave radar system

operates at a starting frequency of f0 = 77 GHz, utilizing 100

ADC (Analog-to-Digital Converter) samples corresponding to

100 range bins. The radar provides a range resolution of 3.85

cm and a FOV of 120° in elevation and 30° in azimuth, with

an angular resolution of 14.32°. This configuration allows for

high-precision detection of subtle movements associated with

concentration-related activities.

2) Data Collection: Our study involved 10 volunteers (i.e.,

8 males and 2 females), aged 24 to 31 years, who participated

in experiments conducted within three different office environ-

ments. Each office varied in size and layout, allowing us to

demonstrate the system’s performance in different environmen-

tal conditions. Each participant was seated in a chair facing

Fig. 9: Accuracy comparison for classifying eye blinking, leg

shaking, nodding, and yawning across 10 different users.

a mmWave device positioned on a desk with its antennas

directed toward their faces. They were asked to perform a

series of concentration-related activities—such as natural eye

blinking, shaking their leg at a comfortable pace, nodding, and

yawning as if sleepy—for 60 seconds each at specific distances

of 50 cm, 100 cm, and 150 cm from the device respectively,

with short breaks between activities. Moreover, participants

engaged in non-concentration-related behaviors like singing

a song or having casual conversations to establish baseline

data. As illustrated in Fig. 7(a) for device placement and

Fig. 7(b) for the different office environments, was repeated

across various settings and distances to assess the robustness

of our system.

3) Evaluation Metrics: To assess our system’s performance,

we employ the following metrics: activities classification accu-

racy (i.e., the ratio of correctly classified instances to the total

number of instances), confusion matrix (i.e, visual representa-

tion of predicted versus ground truth classes), precision (i.e,

ratio of true positives to total predicted positives, indicating

prediction accuracy), recall (i.e., ratio of true positives to

all actual positives, measuring the model’s ability to find all

positive instances).

B. Performance of Activity Classification

We first examine the overall performance of our system

for concentration-related activity detection. As demonstrated

in Fig. 8, the confusion matrix shows the classification re-

sults for eye blinking, leg shaking, nodding, yawning, and

non-concentration-related activities (NC) in percentages. The

overall performance of the system achieves an accuracy of

95.3%. These results demonstrate the effectiveness of our

system in recognizing and monitoring concentration-related

activity with high accuracy. To assess the system’s consistency

across different users, we analyze individual performance data,

as illustrated in Fig. 9. This result shows the concentration-

related activities detection results by individual users, which

achieves an average accuracy of 96.4% across all participants.

This individual accuracy not only confirms the system’s overall

performance but also indicates its reliability and adaptability

to different users.

C. Impact of Different Device-to-Participant Distances

To assess the impact of distance on system performance,

we evaluate the system at three different device-to-participant

distances (i.e., 50 cm, 100 cm, and 150 cm). As shown in

Fig. 10(a), the system demonstrates promising performance

across all tested distances, with variations in accuracy. At

50cm, the system achieves its highest accuracy of 95.3% due



(a) (b)

(c)

Fig. 10: (a) Impact of varying person-device distance (0.5m,

1m, and 1.5m). (b) Impact of different environments (Office

1, Office 2 and Office 3). (c) Precision and recall for activity

classification across varying distances and environments.

to the strongest signal strength and highest resolution at this

close range. As we extend the distance to 100cm, performance

remains around 83.5%. Even at 150cm, the system continues

to achieve a 78.3% accuracy rate, demonstrating its potential

for longer-range applications. Besides, as shown in Fig. 10(c),

the average precision for activity classification for different

distances is 0.8645 and the average recall is 0.8497. These

metrics confirm the system’s performance in both accurately

identifying activities and minimizing misclassifications.The

observed decline in accuracy with increasing distance aligns

with expectations due to reduced signal strength and reso-

lution at greater distances. Note that the system maintains

acceptable performance up to 150 cm, which covers typical

usage scenarios in many applications. Future work could focus

on improving long-range detection capabilities to extend the

system’s effective range.

D. Impact of Different Environments

To evaluate the system’s robustness across diverse environ-

mental conditions, we conducted experiments in three different

office environments as shown in Fig. 7(b). We employed a

cross-environment evaluation approach, where the system was

trained using data from only one environment (e.g., office 1)

and then tested across all three environments (offices 1, 2, and

3). This process was repeated for each environment, training

in one office and evaluating performance in all three. This

approach allows us to test the system’s ability to generalize

to unseen environments, simulating real-world deployment

scenarios where retraining for each new location would be

impractical or inconvenient. Fig. 10(b) illustrates the system’s

performance, demonstrating accuracies of 95.3%, 82.7%, and

85.2% for office 1, office 2 and office 3, respectively. These re-

sults yield a mean accuracy of 87.7% across all environments.

The performance in Office 1 (95.3%) represents the system’s

capability in its training environment, while the accuracies in

Office 2 (82.7%) and Office 3 (85.2%) reflect its generalization

to unseen environments. Besides, as shown in Fig. 10(c),

(a) (b)

Fig. 11: (a) Activity classification accuracy without and with

domain adaptation (DA) across different environment. (b)

Activity classification precision and recall without and with

domain adaptation (DA) across different environment. (e.g.,

O1 − O2 represents training data from Office 1 and testing

data from Office 2).

the average precision for activity classification for different

environments is 0.8835 and the average recall is 0.8713. These

metrics confirm the system’s performance in both accurately

identifying activities and minimizing misclassifications. These

results indicate that environmental factors do impact the sys-

tem’s performance. The performance variation under different

environments can be further enhanced with domain adaptation

techniques, which will be demonstrated in the next subsection.

E. Performance of Domain-independent Training across Dif-

ferent Environments

To further enhance our system’s robustness and address the

performance variations observed across different environments,

we implement domain adaptation techniques. In this approach,

we designate the data collected from one environment as

the source domain, while using a few amount of data from

another environment as the target domain. We evaluated

three distinct source-target pairs (i.e., O1 − O2, O1 − O3,

and O2 − O3 with O1, O2, O3 represent office 1, office

2 and office 3, respectively) to assess the effectiveness of

our domain adaptation strategy. Fig. 11(a) shows the results

of comparing the system’s performance with and without

domain adaptation. The proposed system achieves a 91%

activity classification accuracy in cross-environment scenarios

when employing domain adaptation. This presents an average

increase of 3.3 percentage points compared to the baseline per-

formance without domain adaptation. Moreover, as it shown in

Fig. 11(b), the precision has an average increase of 6.63% after

applying the proposed domain adaptation. The recall has an

average increase of 7% after the proposed domain adaptation.

These results demonstrate the effectiveness of our approach in

reducing the impact of environmental variations and improving

the system’s generalization capability across different settings.

VII. CONCLUSION

In this paper, we propose a novel system for contactless

human concentration monitoring using mmWave signals. The

system can be deployed using a single COTS mmWave device

while achieving high accuracy in detecting concentration-

related activities. We design a multi-stage pipeline that ad-

dresses key challenges in concentration monitoring. Our ap-



proach employs beamforming techniques to enhance signals

from specific body regions, enabling the detection of both

upper and lower body movements. We utilize frequency do-

main analysis to differentiate multiple concurrent activities and

indirect monitoring of belly movements to detect leg shaking

outside the device’s direct field of view. Moreover, a CNN

model is implemented to classify concentration-related activi-

ties from the extracted features. With the integration of domain

adaptation techniques, our system eliminates environment-

specific characteristics from the extracted features, enabling

robust activity recognition across different office settings. Ex-

perimental results demonstrate that our system can accurately

detect and classify concentration-related activities, achieving

an overall accuracy of 95.3%. We also demonstrate the

system’s robustness across varying distances and different

environmental settings.
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